Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
EClinicalMedicine ; 2023.
Article in English | EuropePMC | ID: covidwho-20235670

ABSTRACT

Background Activation of the TREM-1 pathway is associated with outcome in life threatening COVID-19. Data suggest that modulation of this pathway with nangibotide, a TREM-1 modulator may improve survival in TREM-1 activated patients (identified using the biomarker sTREM-1). Methods Phase 2 double-blind randomized controlled trial assessing efficacy, safety, and optimum treatment population of nangibotide (1.0 mg/kg/h) compared to placebo. Patients aged 18–75 years were eligible within 7 days of SARS-CoV-2 documentation and within 48 h of the onset of invasive or non-invasive respiratory support because of COVID-19-related ARDS. Patients were included from September 2020 to April 2022, with a pause in recruitment between January and August 2021. Primary outcome was the improvement in clinical status defined by a seven-point ordinal scale in the overall population with a planned sensitivity analysis in the subgroup of patients with a sTREM-1 level above the median value at baseline (high sTREM-1 group). Secondary endpoints included safety and all-cause 28-day and day 60 mortality. The study was registered in EudraCT (2020-001504-42) and ClinicalTrials.gov (NCT04429334). Findings The study was stopped after 220 patients had been recruited. Of them, 219 were included in the mITT analysis. Nangibotide therapy was associated with an improved clinical status at day 28. Fifty-two (52.0%) of patients had improved in the placebo group compared to 77 (64.7%) of the nangibotide treated population, an odds ratio (95% CI) for improvement of 1.79 (1.02–3.14), p = 0.043. In the high sTREM-1 population, 18 (32.7%) of placebo patients had improved by day 28 compared to 26 (48.1%) of treated patients, an odds ratio (95% CI) of 2.17 (0.96–4.90), p = 0.063 was observed. In the overall population, 28 (28.0%) of placebo treated patients were not alive at the day 28 visit compared to 19 (16.0%) of nangibotide treated patients, an absolute improvement (95% CI) in all-cause mortality at day 28, adjusted for baseline clinical status of 12.1% (1.18–23.05). In the high sTREM-1 population (n = 109), 23 (41.8%) of patients in the placebo group and 12 (22.2%) of patients in the nangibotide group were not alive at day 28, an adjusted absolute reduction in mortality of 19.9% (2.78–36.98). The rate of treatment emergent adverse events was similar in both placebo and nangibotide treated patients. Interpretation Whilst the study was stopped early due to low recruitment rate, the ESSENTIAL study demonstrated that TREM-1 modulation with nangibotide is safe in COVID-19, and results in a consistent pattern of improved clinical status and mortality compared to placebo. The relationship between sTREM-1 and both risk of death and treatment response merits further evaluation of nangibotide using precision medicine approaches in life threatening viral pneumonitis. Funding The study was sponsored by Inotrem SA.

2.
Lancet Respir Med ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20235671

ABSTRACT

BACKGROUND: Activation of the triggering receptor expressed on myeloid cells-1 (TREM-1) pathway is associated with septic shock outcomes. Data suggest that modulation of this pathway in patients with activated TREM-1 might improve survival. Soluble TREM-1 (sTREM-1), a potential mechanism-based biomarker, might facilitate enrichment of patient selection in clinical trials of nangibotide, a TREM-1 modulator. In this phase 2b trial, we aimed to confirm the hypothesis that TREM1 inhibition might improve outcomes in patients with septic shock. METHODS: This double-blind, randomised, placebo-controlled, phase 2b trial assessed the efficacy and safety of two different doses of nangibotide compared with placebo, and aimed to identify the optimum treatment population, in patients across 42 hospitals with medical, surgical, or mixed intensive care units (ICUs) in seven countries. Non-COVID-19 patients (18-85 years) meeting the standard definition of septic shock, with documented or suspected infection (lung, abdominal, or urinary [in patients ≥65 years]), were eligible within 24 h of vasopressor initiation for the treatment of septic shock. Patients were randomly assigned in a 1:1:1 ratio to intravenous nangibotide 0·3 mg/kg per h (low-dose group), nangibotide 1·0 mg/kg per h (high-dose group), or matched placebo, using a computer-generated block randomisation scheme (block size 3). Patients and investigators were masked to treatment allocation. Patients were grouped according to sTREM-1 concentrations at baseline (established from sepsis observational studies and from phase 2a change to data) into high sTREM-1 (≥ 400 pg/mL). The primary outcome was the mean difference in total Sequential Organ Failure Assessment (SOFA) score from baseline to day 5 in the low-dose and high-dose groups compared with placebo, measured in the predefined high sTREM-1 (≥ 400 pg/mL) population and in the overall modified intention-to-treat population. Secondary endpoints included all-cause 28-day mortality, safety, pharmacokinetics, and evaluation of the relationship between TREM-1 activation and treatment response. This study is registered with EudraCT, 2018-004827-36, and Clinicaltrials.gov, NCT04055909. FINDINGS: Between Nov 14, 2019, and April 11, 2022, of 402 patients screened, 355 were included in the main analysis (116 in the placebo group, 118 in the low-dose group, and 121 in the high-dose group). In the preliminary high sTREM-1 population (total 253 [71%] of 355; placebo 75 [65%] of 116; low-dose 90 [76%] of 118; high-dose 88 [73%] of 121), the mean difference in SOFA score from baseline to day 5 was 0·21 (95% CI -1·45 to 1·87, p=0·80) in the low-dose group and 1·39 (-0·28 to 3·06, p=0·104) in the high-dose group versus placebo. In the overall population, the difference in SOFA score from baseline to day 5 between the placebo group and low-dose group was 0·20 (-1·09 to 1·50; p=0·76),and between the placebo group and the high-dose group was 1·06 (-0·23 to 2·35, p=0·108). In the predefined high sTREM-1 cutoff population, 23 (31%) patients in the placebo group, 35 (39%) in the low-dose group, and 25 (28%) in the high-dose group had died by day 28. In the overall population, 29 (25%) patients in the placebo, 38 (32%) in the low-dose, and 30 (25%) in the high-dose group had died by day 28. The number of treatment-emergent adverse events (111 [96%] patients in the placebo group, 113 [96%] in the low-dose group, and 115 [95%] in the high-dose group) and serious treatment-emergent adverse events (28 [24%], 26 [22%], and 31 [26%]) was similar between all three groups. High-dose nangibotide led to a clinically relevant improvement in SOFA score (of two points or more) from baseline to day 5 over placebo in those with higher cutoff concentrations (≥532 pg/mL) of sTREM-1 at baseline. Low dose nangibotide displayed a similar pattern with lower magnitude of effect across all cutoff values. INTERPRETATION: This trial did not achieve the primary outcome of improvement in SOFA score at the predefined sTREM-1 value. Future studies are needed to confirm the benefit of nangibotide at higher concentrations of TREM-1 activation. FUNDING: Inotrem.

3.
N Engl J Med ; 388(21): 1931-1941, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20241324

ABSTRACT

BACKGROUND: Whether the antiinflammatory and immunomodulatory effects of glucocorticoids may decrease mortality among patients with severe community-acquired pneumonia is unclear. METHODS: In this phase 3, multicenter, double-blind, randomized, controlled trial, we assigned adults who had been admitted to the intensive care unit (ICU) for severe community-acquired pneumonia to receive intravenous hydrocortisone (200 mg daily for either 4 or 7 days as determined by clinical improvement, followed by tapering for a total of 8 or 14 days) or to receive placebo. All the patients received standard therapy, including antibiotics and supportive care. The primary outcome was death at 28 days. RESULTS: A total of 800 patients had undergone randomization when the trial was stopped after the second planned interim analysis. Data from 795 patients were analyzed. By day 28, death had occurred in 25 of 400 patients (6.2%; 95% confidence interval [CI], 3.9 to 8.6) in the hydrocortisone group and in 47 of 395 patients (11.9%; 95% CI, 8.7 to 15.1) in the placebo group (absolute difference, -5.6 percentage points; 95% CI, -9.6 to -1.7; P = 0.006). Among the patients who were not undergoing mechanical ventilation at baseline, endotracheal intubation was performed in 40 of 222 (18.0%) in the hydrocortisone group and in 65 of 220 (29.5%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.40 to 0.86). Among the patients who were not receiving vasopressors at baseline, such therapy was initiated by day 28 in 55 of 359 (15.3%) of the hydrocortisone group and in 86 of 344 (25.0%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.43 to 0.82). The frequencies of hospital-acquired infections and gastrointestinal bleeding were similar in the two groups; patients in the hydrocortisone group received higher daily doses of insulin during the first week of treatment. CONCLUSIONS: Among patients with severe community-acquired pneumonia being treated in the ICU, those who received hydrocortisone had a lower risk of death by day 28 than those who received placebo. (Funded by the French Ministry of Health; CAPE COD ClinicalTrials.gov number, NCT02517489.).


Subject(s)
Anti-Inflammatory Agents , Community-Acquired Infections , Hydrocortisone , Pneumonia , Adult , Humans , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/mortality , Double-Blind Method , Hydrocortisone/adverse effects , Hydrocortisone/therapeutic use , Pneumonia/drug therapy , Pneumonia/mortality , Respiration, Artificial , Treatment Outcome
4.
Front Med (Lausanne) ; 9: 1027984, 2022.
Article in English | MEDLINE | ID: covidwho-2246103

ABSTRACT

Introduction: Seasonal epidemic influenza and SARS-CoV-2 are the most frequent viruses causing acute respiratory distress syndrome (ARDS). To what extent these two etiologies differ in ICU patients remains uncertain. We, therefore, aimed at comparing the severity and outcomes of influenza and SARS-CoV-2-induced ARDS in mechanically ventilated patients. Methods: This retrospective, analytic, single-center study was conducted in the medical ICU of Nancy University Hospital in France. Adult patients hospitalized with confirmed influenza (from 2009 to 2019) or SARS-CoV-2-induced ARDS (between March 2020 and May 2021) and those under mechanical ventilation were included. Each patient with influenza was matched with two patients with COVID-19, with the same severity of ARDS. The primary endpoint was death in ICU on day 28. The secondary endpoints were the duration of vasopressors, the use of renal replacement therapy, the duration of mechanical ventilation, and the ICU length of stay. Results: A total of 42 patients with influenza were matched with 84 patients with COVID-19. They had similar sex distribution, age, Charlson comorbidity index, and ARDS severity. On day 28, 11 (26.2%) patients in the influenza group and nine (10.7%) patients in the COVID-19 group had died (p = 0.0084, HR = 3.31, CI 95% [1.36-8.06]). In the univariate Cox model, being infected with SARS-CoV-2, SOFA and SAPS II scores, initial arterial pH, PaCO2, PaO2/FiO2, serum lactate level, platelet count, and use of renal replacement therapy were significantly associated with mortality. In the multivariate Cox model, the SOFA score at admission (p < 0.01, HR = 1.284, CI 95% [1.081; 1.525]) and the initial pH (p < 0.01, HR = 0.618, CI 95% [0.461; 0.828]) were the only predictors of mortality. The type of virus had no influence on mortality, though patients with COVID-19 underwent longer mechanical ventilation and received more neuromuscular blockers and prone positioning. Conclusion: In mechanically ventilated patients with ARDS, 28-day mortality was higher among patients with influenza as compared to patients with COVID-19 because of a higher initial extra-pulmonary severity. However, the type of virus was not, by itself, correlated with mortality.

5.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2208070

ABSTRACT

Introduction Seasonal epidemic influenza and SARS-CoV-2 are the most frequent viruses causing acute respiratory distress syndrome (ARDS). To what extent these two etiologies differ in ICU patients remains uncertain. We, therefore, aimed at comparing the severity and outcomes of influenza and SARS-CoV-2-induced ARDS in mechanically ventilated patients. Methods This retrospective, analytic, single-center study was conducted in the medical ICU of Nancy University Hospital in France. Adult patients hospitalized with confirmed influenza (from 2009 to 2019) or SARS-CoV-2-induced ARDS (between March 2020 and May 2021) and those under mechanical ventilation were included. Each patient with influenza was matched with two patients with COVID-19, with the same severity of ARDS. The primary endpoint was death in ICU on day 28. The secondary endpoints were the duration of vasopressors, the use of renal replacement therapy, the duration of mechanical ventilation, and the ICU length of stay. Results A total of 42 patients with influenza were matched with 84 patients with COVID-19. They had similar sex distribution, age, Charlson comorbidity index, and ARDS severity. On day 28, 11 (26.2%) patients in the influenza group and nine (10.7%) patients in the COVID-19 group had died (p = 0.0084, HR = 3.31, CI 95% [1.36–8.06]). In the univariate Cox model, being infected with SARS-CoV-2, SOFA and SAPS II scores, initial arterial pH, PaCO2, PaO2/FiO2, serum lactate level, platelet count, and use of renal replacement therapy were significantly associated with mortality. In the multivariate Cox model, the SOFA score at admission (p < 0.01, HR = 1.284, CI 95% [1.081;1.525]) and the initial pH (p < 0.01, HR = 0.618, CI 95% [0.461;0.828]) were the only predictors of mortality. The type of virus had no influence on mortality, though patients with COVID-19 underwent longer mechanical ventilation and received more neuromuscular blockers and prone positioning. Conclusion In mechanically ventilated patients with ARDS, 28-day mortality was higher among patients with influenza as compared to patients with COVID-19 because of a higher initial extra-pulmonary severity. However, the type of virus was not, by itself, correlated with mortality.

6.
Front Med (Lausanne) ; 8: 720920, 2021.
Article in English | MEDLINE | ID: covidwho-1969028

ABSTRACT

Introduction: The best way to titrate the positive end-expiratory pressure (PEEP) in patients suffering from acute respiratory distress syndrome is still matter of debate. Electrical impedance tomography (EIT) is a non-invasive technique that could guide PEEP setting based on an optimized ventilation homogeneity. Methods: For this study, we enrolled the patients with 2019 coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS), who required mechanical ventilation and were admitted to the ICU in March 2021. Patients were monitored by an esophageal catheter and a 32-electrode EIT device. Within 48 h after the start of mechanical ventilation, different levels of PEEP were applied based upon PEEP/FiO2 tables, positive end-expiratory transpulmonary (PL)/ FiO2 table, and EIT. Respiratory mechanics variables were recorded. Results: Seventeen patients were enrolled. PEEP values derived from EIT (PEEPEIT) were different from those based upon other techniques and has poor in-between agreement. The PEEPEIT was associated with lower plateau pressure, mechanical power, transpulmonary pressures, and with a higher static compliance (Crs) and homogeneity of ventilation. Conclusion: Personalized PEEP setting derived from EIT may help to achieve a more homogenous distribution of ventilation. Whether this approach may translate in outcome improvement remains to be investigated.

7.
Front Med (Lausanne) ; 9: 828402, 2022.
Article in English | MEDLINE | ID: covidwho-1775697

ABSTRACT

Objectives: The clinical outcomes of the Beta (B.1.351) variant of concern (VOC) of the SARS-CoV-2 virus remain poorly understood. In early 2021, northeastern France experienced an outbreak of Beta that was not observed elsewhere. This outbreak slightly preceded and then overlapped with a second outbreak of the better understood VOC Alpha (B.1.1.7) in the region. This situation allowed us to contemporaneously compare Alpha and Beta in terms of the characteristics, management, and outcomes of critically ill patients. Methods: A multicenter prospective cohort study was conducted on all consecutive adult patients who had laboratory confirmed SARS CoV-2 infection, underwent variant screening, and were admitted to one of four intensive care units (ICU) for acute respiratory failure between January 9th and May 15th, 2021. Primary outcome was 60-day mortality. Differences between Alpha and Beta in terms of other outcomes, patient variables, management, and vaccination characteristics were also explored by univariate analysis. The factors that associated with 60-day death in Alpha- and Beta-infected patients were examined with logistic regression analysis. Results: In total, 333 patients (median age, 63 years; 68% male) were enrolled. Of these, 174 and 159 had Alpha and Beta, respectively. The two groups did not differ significantly in terms of 60-day mortality (19 vs. 23%), 28-day mortality (17 vs. 20%), need for mechanical ventilation (60 vs. 61%), mechanical ventilation duration (14 vs. 15 days), other management variables, patient demographic variables, comorbidities, or clinical variables on ICU admission. The vast majority of patients were unvaccinated (94%). The remaining 18 patients had received a partial vaccine course and 2 were fully vaccinated. The vaccinated patients were equally likely to have Alpha and Beta. Conclusions: Beta did not differ from Alpha in terms of patient characteristics, management, or outcomes in critically ill patients. Trial Registration: ClinicalTrials.gov, identifier: NCT04906850.

8.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1601997

ABSTRACT

Introduction: The best way to titrate the positive end-expiratory pressure (PEEP) in patients suffering from acute respiratory distress syndrome is still matter of debate. Electrical impedance tomography (EIT) is a non-invasive technique that could guide PEEP setting based on an optimized ventilation homogeneity. Methods: For this study, we enrolled the patients with 2019 coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS), who required mechanical ventilation and were admitted to the ICU in March 2021. Patients were monitored by an esophageal catheter and a 32-electrode EIT device. Within 48 h after the start of mechanical ventilation, different levels of PEEP were applied based upon PEEP/FiO2 tables, positive end-expiratory transpulmonary (PL)/ FiO2 table, and EIT. Respiratory mechanics variables were recorded. Results: Seventeen patients were enrolled. PEEP values derived from EIT (PEEPEIT) were different from those based upon other techniques and has poor in-between agreement. The PEEPEIT was associated with lower plateau pressure, mechanical power, transpulmonary pressures, and with a higher static compliance (Crs) and homogeneity of ventilation. Conclusion: Personalized PEEP setting derived from EIT may help to achieve a more homogenous distribution of ventilation. Whether this approach may translate in outcome improvement remains to be investigated.

9.
Ann Intensive Care ; 10(1): 24, 2020 Feb 13.
Article in English | MEDLINE | ID: covidwho-1453061

ABSTRACT

BACKGROUND: Right ventricular (RV) function evaluation by echocardiography is key in the management of ICU patients with acute respiratory distress syndrome (ARDS), however, it remains challenging. Quantification of RV deformation by speckle-tracking echocardiography (STE) is a recently available and reproducible technique that provides an integrated analysis of the RV. However, data are scarce regarding its use in critically ill patients. The aim of this study was to assess its feasibility and clinical usefulness in moderate-severe ARDS patients. RESULTS: Forty-eight ARDS patients under invasive mechanical ventilation (MV) were consecutively enrolled in a prospective observational study. A full transthoracic echocardiography was performed within 36 h of MV initiation. STE-derived and conventional parameters were recorded. Strain imaging of the RV lateral, inferior and septal walls was highly feasible (47/48 (98%) patients). Interobserver reproducibility of RV strain values displayed good reliability (intraclass correlation coefficients (ICC) > 0.75 for all STE-derived parameters) in ARDS patients. ROC curve analysis showed that lateral, inferior, global (average of the 3 RV walls) longitudinal systolic strain (LSS) and global strain rate demonstrated significant diagnostic values when compared to several conventional indices (TAPSE, S', RV FAC). A RV global LSS value > - 13.7% differentiated patients with a TAPSE < vs > 12 mm with a sensitivity of 88% and a specificity of 83%. Regarding clinical outcomes, mortality and cumulative incidence of weaning from MV at day 28 were not different in patients with normal versus abnormal STE-derived parameters. CONCLUSIONS: Global STE assessment of the RV was highly achievable and reproducible in moderate-severe ARDS patients under MV and additionally correlated with several conventional parameters of RV function. In our cohort, STE-derived parameters did not provide any incremental value in terms of survival or weaning from MV prediction. Further investigations are needed to evaluate their theranostic usefulness. Trial registration NCT02638844: NCT.

10.
Biosci Rep ; 41(7)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1290282

ABSTRACT

Patients with sepsis display increased concentrations of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells 1), and a phase II clinical trial focusing on TREM-1 modulation is ongoing. We investigated whether sTREM-1 circulating concentrations are associated with the outcome of patients with coronavirus disease 2019 (COVID-19) to assess the role of this pathway in COVID-19. This observational study was performed in two independent cohorts of patients with COVID-19. Plasma concentrations of sTREM-1 were assessed after ICU admission (pilot cohort) or after COVID-19 diagnosis (validation cohort). Routine laboratory and clinical parameters were collected from electronic patient files. Results showed sTREM-1 plasma concentrations were significantly elevated in patients with COVID-19 (161 [129-196] pg/ml) compared to healthy controls (104 [75-124] pg/ml; P<0.001). Patients with severe COVID-19 needing ICU admission displayed even higher sTREM-1 concentrations compared to less severely ill COVID-19 patients receiving clinical ward-based care (235 [176-319] pg/ml and 195 [139-283] pg/ml, respectively, P = 0.017). In addition, higher sTREM-1 plasma concentrations were observed in patients who did not survive the infection (326 [207-445] pg/ml) compared to survivors (199 [142-278] pg/ml, P<0.001). Survival analyses indicated that patients with higher sTREM-1 concentrations are at higher risk for death (hazard ratio = 3.3, 95%CI: 1.4-7.8). In conclusion, plasma sTREM-1 concentrations are elevated in patients with COVID-19, relate to disease severity, and discriminate between survivors and non-survivors. This suggests that the TREM-1 pathway is involved in the inflammatory reaction and the disease course of COVID-19, and therefore may be considered as a therapeutic target in severely ill patients with COVID-19.


Subject(s)
COVID-19/diagnosis , Triggering Receptor Expressed on Myeloid Cells-1/blood , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Healthy Volunteers , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Risk Assessment/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index , Survival Analysis
11.
Int J Obes (Lond) ; 45(9): 2028-2037, 2021 09.
Article in English | MEDLINE | ID: covidwho-1265937

ABSTRACT

BACKGROUND: Patients with obesity are at increased risk of severe COVID-19, requiring mechanical ventilation due to acute respiratory failure. However, conflicting data are obtained for intensive care unit (ICU) mortality. OBJECTIVE: To analyze the relationship between obesity and in-hospital mortality of ICU patients with COVID-19. SUBJECTS/METHODS: Patients admitted to the ICU for COVID-19 acute respiratory distress syndrome (ARDS) were included retrospectively. The following data were collected: comorbidities, body mass index (BMI), the severity of ARDS assessed with PaO2/FiO2 (P/F) ratios, disease severity measured by the Simplified Acute Physiology Score II (SAPS II), management and outcomes. RESULTS: For a total of 222 patients, there were 34 patients (15.3%) with normal BMI, 92 patients (41.4%) who were overweight, 80 patients (36%) with moderate obesity (BMI:30-39.9 kg/m2), and 16 patients (7.2%) with severe obesity (BMI ≥ 40 kg/m2). Overall in-hospital mortality was 20.3%. Patients with moderate obesity had a lower mortality rate (13.8%) than patients with normal weight, overweight or severe obesity (17.6%, 21.7%, and 50%, respectively; P = 0.011. Logistic regression showed that patients with a BMI ≤ 29 kg/m2 (odds ratio [OR] 3.64, 95% CI 1.38-9.60) and those with a BMI > 39 kg/m2 (OR 10.04, 95% CI 2.45-41.09) had a higher risk of mortality than those with a BMI from 29 to 39 kg/m2. The number of comorbidities (≥2), SAPS II score, and P/F < 100 mmHg were also independent predictors for in-hospital mortality. CONCLUSIONS: COVID-19 patients admitted to the ICU with moderate obesity had a lower risk of death than the other patients, suggesting a possible obesity paradox.


Subject(s)
COVID-19/mortality , Obesity/complications , Respiratory Insufficiency/mortality , Adolescent , Adult , Aged , Body Mass Index , COVID-19/complications , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Overweight/complications , Respiratory Insufficiency/complications , Retrospective Studies , Young Adult
12.
Ann Intensive Care ; 11(1): 90, 2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1255966

ABSTRACT

BACKGROUND: We investigated the impact of the COVID-19 crisis on mental health of professionals working in the intensive care unit (ICU) according to the intensity of the epidemic in France. METHODS: This cross-sectional survey was conducted in 77 French hospitals from April 22 to May 13 2020. All ICU frontline healthcare workers were eligible. The primary endpoint was the mental health, assessed using the 12-item General Health Questionnaire. Sources of stress during the crisis were assessed using the Perceived Stressors in Intensive Care Units (PS-ICU) scale. Epidemic intensity was defined as high or low for each region based on publicly available data from Santé Publique France. Effects were assessed using linear mixed models, moderation and mediation analyses. RESULTS: In total, 2643 health professionals participated; 64.36% in high-intensity zones. Professionals in areas with greater epidemic intensity were at higher risk of mental health issues (p < 0.001), and higher levels of overall perceived stress (p < 0.001), compared to low-intensity zones. Factors associated with higher overall perceived stress were female sex (B = 0.13; 95% confidence interval [CI] = 0.08-0.17), having a relative at risk of COVID-19 (B = 0.14; 95%-CI = 0.09-0.18) and working in high-intensity zones (B = 0.11; 95%-CI = 0.02-0.20). Perceived stress mediated the impact of the crisis context on mental health (B = 0.23, 95%-CI = 0.05, 0.41) and the impact of stress on mental health was moderated by positive thinking, b = - 0.32, 95% CI = - 0.54, - 0.11. CONCLUSION: COVID-19 negatively impacted the mental health of ICU professionals. Professionals working in zones where the epidemic was of high intensity were significantly more affected, with higher levels of perceived stress. This study is supported by a grant from the French Ministry of Health (PHRC-COVID 2020).

13.
Clin Infect Dis ; 71(9): 2447-2456, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-960492

ABSTRACT

BACKGROUND: In patients with severe coronavirus disease 2019 (COVID-19), data are scarce and conflicting regarding whether chronic use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) influences disease outcomes. In patients with severe COVID-19, we assessed the association between chronic ACEI/ARB use and the occurrence of kidney, lung, heart, and liver dysfunctions and the severity of the inflammatory reaction as evaluated by biomarkers kinetics, and their association with disease outcomes. METHODS: We performed a retrospective longitudinal cohort study on consecutive patients with newly diagnosed severe COVID-19. Independent predictors were assessed through receiver operating characteristic analysis, time-series analysis, logistic regression analysis, and multilevel modeling for repeated measures. RESULTS: On the 149 patients included in the study 30% (44/149) were treated with ACEI/ARB. ACEI/ARB use was independently associated with the following biochemical variations: phosphorus >40 mg/L (odds ratio [OR], 3.35, 95% confidence interval [CI], 1.83-6.14), creatinine >10.1 mg/L (OR, 3.22, 2.28-4.54), and urea nitrogen (UN) >0.52 g/L (OR, 2.65, 95% CI, 1.89-3.73). ACEI/ARB use was independently associated with acute kidney injury stage ≥1 (OR, 3.28, 95% CI, 2.17-4.94). The daily dose of ACEI/ARB was independently associated with altered kidney markers with an increased risk of +25 to +31% per each 10 mg increment of lisinopril-dose equivalent. In multivariable multilevel modeling, UN >0.52 g/L was independently associated with the risk of acute respiratory failure (OR, 3.54, 95% CI, 1.05-11.96). CONCLUSIONS: Patients chronically treated with ACEI/ARB who have severe COVID-19 are at increased risk of acute kidney injury. In these patients, the increase in UN associated with ACEI/ARB use could predict the development of acute respiratory failure.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/virology , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/complications , SARS-CoV-2 , Aged , Aged, 80 and over , Biomarkers/analysis , Female , France , Humans , Kidney/drug effects , Kidney/virology , Logistic Models , Longitudinal Studies , Male , Middle Aged , Multilevel Analysis , ROC Curve , Referral and Consultation , Retrospective Studies
14.
EClinicalMedicine ; 27: 100554, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-778783

ABSTRACT

BACKGROUND: In patients with severe COVID-19, no data are available on the longitudinal evolution of biochemical abnormalities and their ability to predict disease outcomes. METHODS: Using a retrospective, longitudinal cohort study design on consecutive patients with severe COVID-19, we used an extensive biochemical dataset of serial data and time-series design to estimate the occurrence of organ dysfunction and the severity of the inflammatory reaction and their association with acute respiratory failure (ARF) and death. FINDINGS: On the 162 studied patients, 1151 biochemical explorations were carried out for up to 59 biochemical markers, totaling 15,260 biochemical values. The spectrum of biochemical abnormalities and their kinetics were consistent with a multi-organ involvement, including lung, kidney, heart, liver, muscle, and pancreas, along with a severe inflammatory syndrome. The proportion of patients who developed an acute kidney injury (AKI) stage 3, increased significantly during follow-up (0·9%, day 0; 21·4%, day 14; P<0·001). On the 20 more representative biochemical markers (>250 iterations), only CRP >90 mg/L (odds ratio [OR] 6·87, 95% CI, 2·36-20·01) and urea nitrogen >0·36 g/L (OR 3·91, 95% CI, 1·15-13·29) were independently associated with the risk of ARF. Urea nitrogen >0·42 g/L was the only marker associated with the risk of COVID-19 related death. INTERPRETATION: Our results point out the lack of the association between the inflammatory markers and the risk of death but rather highlight a significant association between renal dysfunction and the risk of COVID-19 related acute respiratory failure and death.

15.
Stem Cells Transl Med ; 9(12): 1488-1494, 2020 12.
Article in English | MEDLINE | ID: covidwho-718380

ABSTRACT

Sepsis is defined as life-threatening organ dysfunction caused by a deregulated immune host response to infection. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted this multifactorial and complex syndrome. The absence of specific treatment neither against SARS-CoV-2 nor against acute respiratory distress syndrome (ARDS), the most serious stage of this infection, has emphasized the need to find alternative treatments. Several therapeutics are currently being tested, including mesenchymal stromal cells. These cells, already used in preclinical models of ARDS, sepsis, and septic shock and also in a few clinical trials, appear well-tolerated and promising, but many questions remain unanswered.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Sepsis/therapy , Shock, Septic/therapy , Animals , COVID-19/pathology , COVID-19/virology , Clinical Trials as Topic , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , Sepsis/pathology , Shock, Septic/pathology , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL